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ABSTRACT

Modern high performance systems are becoming increasingly complex and powerful due to

advancements in processor and memory architecture. In order to keep up with this increasing

complexity, applications have to be augmented with certain capabilities to fully exploit such

systems. These may be at the application level, such as static or dynamic adaptations or at the

system level, like having strategies in place to override some of the default operating system

polices, the main objective being to improve computational performance of the application.

The current work proposes two such capabilites with respect to multi-threaded scientific appli-

cations, in particular a large scale physics application computing ab-initio nuclear structure.

The first involves using a middleware tool to invoke dynamic adaptations in the application,

so as to be able to adjust to the changing computational resource availability at run-time.

The second involves a strategy for effective placement of data in main memory, to optimize

memory access latencies and bandwidth. These capabilties when included were found to have

a significant impact on the application performance, resulting in average speedups of as much

as two to four times.
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CHAPTER 1. Introduction

With the continuous advancements happening in high performance computer architecture,

newer and more powerful architectures are being introduced resulting in increasingly complex

systems. In such a scenario, it becomes crucial for high performance applications to be able to

fully leverage these architectures, in order to maximize their computational performance. This

involves introducing certain capabilities in these applications to make sure that they utilize

the computational resources available to the best possible extent. These may be in the form

of adaptations invoked within the application or system based strategies in place for ensuring

efficient execution. The current work proposes two such capabilities for multi-threaded scientific

applications which have been found to significantly improve application performance. The

main focus of this work is on improving application performance for multicore shared memory

architectures. The work described in Chapter 3 has been published in the proceedings of the

PDSEC workshop, a part of the 2011 IEEE Parallel and Distributed Processing Symposium

(IPDPS) Srinivasa et al. (2011). The work described in Chapter 4 has been filed as a technical

report Srinivasa and Sosonkina (2011) with the Computer Science Department at Iowa State

University.

First, a strategy for incorporating application level adaptations in considered to adapt to

the changing computational resource availability during the course of execution of an applica-

tion. This is especially true in modern multi-user cluster environments where users can run

many high-performance applications simultaneously which share resources such as Processing

Elements (PEs), I/O, main memory, network. In such a scenario, it would be greatly advanta-

geous to have applications augmented with adaptive capabilities, particularly during run-time.

This involves targeting a computationally intensive part of the application and invoking appro-

priate adaptations so as to be able to adjust to the dynamically changing system conditions,
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to prevent drastic performance loss. Here, the parallel application MFDn (Many Fermion Dy-

namics for nuclear structure) used for ab-initio nuclear physics calculations is integrated with a

middleware tool for invoking such adaptations. In particular, the multi-threaded Lanczos diag-

onalization procedure in MFDn is targeted to observe the effect on performance of dynamically

changing the number of threads during the iterative process. Performance gains between two

to seven times were observed in the presence of competing applications by incorporating these

adaptation strategies.

Second, a strategy for efficiently distributing data processed by an application is studied in

order to optimize memory access. This is important because as the core counts on modern multi-

processor systems increase, so does the memory contention with all the processes/threads trying

to access the main memory simultaneously. This is typical of UMA (Uniform Memory Access)

architectures with a single physical memory bank leading to poor scalability in multi-threaded

applications. To palliate this problem, modern systems are moving increasingly towards Non-

Uniform Memory Access (NUMA) architectures, in which the physical memory is split into

several (typically two or four) banks. Each memory bank is associated with a set of cores

enabling threads to operate from their own physical memory banks while retaining the concept

of a shared virtual address space. However, accessing shared data structures from the remote

memory banks may become increasingly slow. This work proposes a way to determine and pin

certain parts of the shared data to specific memory banks, thus minimizing remote accesses. To

achieve this, the existing application code has be supplied with the proposed interface to set-up

and distribute the shared data appropriately among memory banks. Experiments with NAS

benchmark as well as with the realistic large-scale application MFDn have been performed.

Speedups of up to 3.5 times were observed with the proposed approach compared with the

default memory placement policy.
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CHAPTER 2. Review of literature

Computational peformance is a very important aspect for applications in the High Perfor-

mance Computing (HPC) domain. This is because of the large scale nature of these applications

which places an increased demand on the CPU and memory resources and also the continu-

ously evolving architectural features which are designed to meet these demands. In such a

scenario, understanding the impact of the underlying architecture on application performance

and formulating strategies for improving it constitute an active research topic in this domain.

As a consequence, there have been a lot of studies which have been conducted with a view of

analyzing performance of high performance applications on modern architectures and method-

ologies which have proposed for enhancing this performance, both at the application level as

well as at the system level.

With computational resource availability often changing during application run-time on

modern multi-user cluster environments, it becomes necessary for applications to adapt to

these changing system conditions, to avoid loss of performance. A number of methods have

been proposed for enabling run-time application adaptations, in a manner which enables the

system related monitoring and decision making process to be delineated from the application

execution. Hollingsworth and Keleher (1998) propose a resource management system to dy-

namically adapt ongoing computations to changing system conditions, the objective being to

efficiently execute parallel applications in large-scale, dynamic environments. Andersen et al.

(2000) present an easily accessible operating system module to enable internet applications to

be notified of, and be able to adapt to, dynamically changing network conditions. A helper

middleware tool has been presented by Sosonkina (2006) to make an application aware of sys-

tem run-time system changes and to adapt it dynamically to the new conditions. Specifically,

a packet probing module is implemented by the tool to detect contention on the nodes of a
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cluster. Ustemirov et al. (2006) use this middleware tool to switch the execution of electronic

structure calculations between I/O and memory access based on I/O resource contention at

run-time. Chang and Karamcheti (2000) propose an application independent framework for (1)

exposing application adaptation choices in the form of alternate configurations and (2) emulat-

ing application execution in a virtual environment with changing resource availability, so as to

gather information about the resulting behavior of the application. The resulting framework is

used to adapt an image visualization application to changes in PE load and network bandwidth

by controlling application related behavior such as the compression algorithm used or the image

transmission sequence. To our knowledge though, the current work is the first one proposed

for dynamically detecting and avoiding PE core oversubscription in a fine-grained manner by

monitoring and varying the number of application threads during run-time.

In scientific high performance computing, efficient data placement and memory affinity

becomes a crucial aspect due to the data intensive nature of applications. A lot of research

has been done for managing memory affinity on multicore NUMA platforms, both from the

kernel and user space, to optimize memory access for maximum performance. An API for

implementing some basic memory affinity policies, overriding the default policy of the operating

system has been described by Kleen (2005) for Linux NUMA platforms. Antony et al. (2006)

provide a framework for performing thread and memory placement on Solaris and Linux. The

framework uses a Placement Distribution Model (PDM) which describes performance as a

function of bandwidth and latency and is used to analyse performance results. In Goglin and

Furmento (2009), a next-touch memory affinity policy has been implemented in the Linux

kernel. This policy causes data migration when a thread touches it for the next time, which in

general gives a better picture of the frequency of usage of a particular piece of data by a thread,

and allows for more local accesses. Löf and Holmgren (2005) use this next-touch policy for

improving the performance of an industrial PDE solver on a Linux NUMA system. Terboven

et al. (2008) explore data and thread affinity for OpenMP programs. A portable user-level

interface named MAi (Memory Affinity Interface) has been presented by Ribeiro et al. (2009)

to provide a set of memory affinity polices for fine grained data control in scientific applications

on Linux NUMA platforms. However, all these solutions provide a set of very generic policies
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for dealing with memory affinity and data placement on NUMA machines, which leaves a lot

of work for the user in determining how best to use these polices for a particular application.

The current work is different in the sense that it proposes an easy to use interface designed

for a certain class of computations which a user can directly integrate into their application

without worrying about the internal details.
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CHAPTER 3. Dynamic adaptations in ab-initio nuclear physics

calculations

3.1 Background and significance

The direct solution of the quantum many-body problem transcends several areas of physics

and chemistry. Nuclear physics faces the multiple hurdles of a very strong interaction, three-

nucleon interactions, and complicated collective motion dynamics. The aim is to solve for the

structure of light nuclei addressing all three hurdles simultaneously by direct diagonalization

of the nuclear many-body Hamiltonian matrix in a harmonic oscillator basis.

A tool to study nuclear structure is the software package MFDn (Many Fermion Dynamics

for nuclear structure) developed by Vary et al. Vary (1992); Vary and Zheng (1994); Sternberg

et al. (2008); Sosonkina et al. (2008); Maris et al. (2010) at Iowa State University. In MFDn,

the nuclear Hamiltonian is evaluated in a large harmonic oscillator basis and diagonalized by

iterative techniques to obtain the low-lying eigenvalues and eigenvectors. The eigenvectors are

then used to evaluate a suite of experimental quantities to test accuracy and convergence issues.

MFDn has been shown to have good scaling properties using the Message Passing Interface

(MPI) Forum (1994) on existing supercomputing architectures due to the recent algorithmic

improvements that significantly improved its overall performance. In Maris et al. (2010), the

use of a hybrid MPI/OpenMP approach Rabenseifner et al. (2009) has been presented to take

advantage of the current multi-core supercomputing platforms. Under this approach, MPI

and OpenMP Dagnum and Menon (1998) are used to communicate among inter-node and

intra-node cores, respectively. The number of OpenMP threads that are to be spawned per

process is fixed statically at the start of the run and is the same for every MPI process in the

execution. This makes sense when running on some of the larger supercomputers or leadership
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class facilities since here, applications typically get the full use of the node(s) on which they

are running.

However, in the case of most interactive cluster environments or cloud computing testbeds,

users can run multiple high performance applications simultaneously. As a result, computa-

tional resource availability can often change during the run-time of the application. To cope

with this, it might be beneficial to have an adaptive algorithm to change the number of threads

dynamically based on system information gathered at run-time. However, changing the source

code of an application such as MFDn to insert these adaptations is not feasible since it will

increase the complexity of the scientific code, which may adversely affect its accuracy and us-

ability. In such a scenario, there is a need for some generic middleware which can monitor the

system resources during the execution of the application and invoke appropriate application

adaptations. In this work, the middleware tool NICAN Sosonkina (2006) is used to monitor

the number of threads/processes in the system during the execution of MFDn. Based on this

run-time information gathered, the number of threads spawned is changed at regular intervals

during the Lanczos diagonalization procedure. (See, e.g., Maris et al. (2010) for a description of

the Lanczos algorithm.) This particular section of the code is chosen for invoking adaptations

due to its iterative and computationally intensive nature.

3.2 Overview of ab-initio nuclear sructure calculations in the MFDn

package

The MFDn software is a parallel code for ab initio nuclear structure calculations written in

Fortran90 and MPI, being actively developed for almost two decades. In the early development

of the code Vary (1992) and Vary and Zheng (1994), the main focus has been efficient use of

memory; significant improvements in its performance have been made over the last 3 years

Sternberg et al. (2008); Sosonkina et al. (2008); Maris et al. (2010); Vary et al. (2009); Laghave

et al. (2009) under the US Department of Energy Scientific Discovery through Advanced Com-

puting (SciDAC) Program.

The MFDn code computes a few lowest converged solutions, that is, the eigenvalues (energy
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Figure 3.1 Two dimensional distribution of the lower triangle of the Hamiltonian matrix (Di-
agonal processors are numbered 1 – 5 and marked in red).

levels) and eigenvectors (wave functions), for the many-nucleon Schrödinger equation:

H |φ〉 = E |φ〉 . (3.1)

One key feature of this calculation is the size of the very large sparse Hamiltonian matrix H

it can produce. The dimension of the matrix characterizes the size of the many-body basis used

to represent a nuclear wave function. In general, the larger the basis set and the total number

of the oscillator quanta Nmax above the lowest nuclei configuration, the higher the accuracy

of the energy estimation Maris et al. (2009). MFDn constructs the many-body basis states,

the Hamiltonian matrix, and solves for the lowest eigenvalues using the Lanczos algorithm.

At the end of a run, it outputs the nuclear wave functions and evaluates selected physical

observables, which can be compared to experimental data. The matrix is distributed in a 2-

dimensional fashion over the processors (see Fig. 3.1), and only the lower triangle is stored

and used, because the matrix is symmetric (and real-valued). The Lanczos vectors, needed

for re-orthogonalization after every matrix-vector multiplication, are distributed over all the

processors. Because of the 2-dimensional distribution of the matrix, MFDn runs on n(n + 1)/2

processors, where n is the number of diagonal processors.

Since the Lanczos procedure is of particular interest in this work, an overview of the iterative

process is provided (see Fig. 3.3). Each iteration consists of a matrix-vector multiplication,

followed by an orthogonalization against all the previous Lanczos vectors (which are also all
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Figure 3.2 Performance improvement shown by the MFDn code over different versions.

stored in memory, distributed over all processors). After each matrix-vector multiplication, the

resulting vector is accumulated on the n diagonal processors. Next, this vector is distributed

to all the processors to do the orthogonalization, and finally the new input vector is distributed

to all the processors. After a fixed number of Lanczos iterations (which is an input variable),

the lowest eigenvalues and the corresponding wave functions are written to disk from the n

diagonal processors.

Fig. 3.2 depicts the performance improvement obtained with the MFDn code over its dif-

ferent versions, starting from the very first version to the most recent. These numbers are from

experiments conducted on the Franklin supercomputer1.

3.2.1 MFDn using Hybrid MPI/OpenMP

Since modern processors are equipped with multiple cores, applications augmented with

multi-threading capabilities can become considerably more efficient by making use of the mul-
1Franklin is a Cray XT4 at the National Energy Research Scientific Computing Center (NERSC) with 9,572

compute nodes. Each node is 2.3 GHz quad-core AMD Opteron processor (Budapest), with 2 GB per core.
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tiple cores and overlapping memory access and communications with computations. To take

advantage of the multiple cores, a hybrid MPI/OpenMP approach for MFDn has been pre-

sented in Maris et al. (2010). It employs multi-threading using OpenMP directives in the most

computationally intensive parts of the code, which are the construction of the Hamiltonian

matrix, the Lanczos iterations, and the evaluation of observables.

For the Lanczos iterations, the sparse matrix-vector multiplication is parallelized using an

OpenMP DO directive to loop over the columns. Due to matrix symmetry, each matrix block

is used twice in the multiplication. As a result, each thread has its own private output vectors

for the result of the transpose matrix-vector multiplication, which are added inside an OpenMP

CRITICAL region. The orthogonalization of the output vector against all the previous Lanczos

vectors is also parallelized with an OpenMP DO directive. An experimental study of the speed-

up with the increase in the number of threads has been carried out in Maris et al. (2010), during

which the maximum speed-up of 2.5 was obtained with four threads on a single node of the

Franklin supercomputer for 12C nucleus with Nmax = 4. It has been observed that the scaling

was hindered by the sequential computation fraction performed in the critical section and the

MPI communication overhead becoming an increasing fraction of the overall Lanczos time.

By using OpenMP directives as described above, parallelism may be achieved by splitting

the computation into multiple threads of execution. In the current implementation of the

Hybrid MPI/OpenMP approach, the number of threads spawned for the OpenMP regions is

determined statically at the start of the MFDn run. However, it might be necessary, during

the run, to be able to adapt to the changing system conditions in terms of computational

resource availability. In light of this, a strategy which involves changing the number of threads

dynamically based on certain information about the state of the system resources at run-time

might very well prove to be useful, especially in the presence of any competing applications.

This work explores changing the number of OpenMP threads spawned at the beginning of every

Lanczos iteration (as illustrated in Fig. 3.3) using system information gathered at run-time by

a middleware engine integrated with MFDn.
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Figure 3.3 Iterative model for the Lanczos procedure (The Lanczos pivot vector is the initial
working vector required for the first MATVEC).

3.3 Using Middleware NICAN with applications

While running parallel and distributed applications, the assumption that the resources

are dedicated to running only the current job may be too restrictive. This is especially true

in the case of interactive cluster environments or cloud computing testbeds where users can

simultaneously run different applications sharing resources, such as Processing Elements (PEs),

I/O, main memory, and network. In such cases, system resource availability often changes

during the course of execution of the application. This calls for certain run-time adaptations in

these applications to be able to adjust to the dynamically changing system conditions. However,

it is not desirable to insert these adaptations into the source code of an application, such as

MFDn, since this will increase the complexity of the scientific code with adverse affects on its

accuracy and usability. The latter is of particular concern since high performance applications

are supposed to run on a computational platform by an application scientist who may not be an

expert in computer architecture and performance tuning. Hence, there is a need for a generic

middleware tool which can monitor the system resources and invoke appropriate run-time

adaptations for a large class of applications, so that such a tool may be quickly geared towards

a specific application. While leaving its main architecture and system monitoring capabilities
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intact, the middleware may be augmented by a specific application module Ustemirov et al.

(2006), thus acting as an interface between the hardware and the application execution. In

this work, the middleware tool NICAN Sosonkina (2006) developed at Iowa State University is

used to serve as an interface with MFDn.

3.3.1 NICAN Overview

The main idea of integrating NICAN with an application is to decouple the system-related

monitoring and decision making from the execution of the application, while timely invoking

application adaptation functions (handlers). The NICAN engine is encapsulated into a sep-

arate thread, called Manager, which controls the functional modules and invokes application

adaptations. Due to dynamically loadable modules, NICAN is versatile and may have a wide

variety of interactions with the system or application. Each module is designated to perform

a separable function, such as to determine a system runtime characteristics or to validate

machine-dependent parameters. NICAN has a rather general and flexible interaction mecha-

nism, which permits to “talk” to a variety of application codes. Enhanced with general-use

modules, such as CPU monitoring or disk I/O checking, NICAN may not require customized

integration with an application. However, to explore application-specific trigger conditions,

specific-use NICAN modules may also be needed.

NICAN is mostly used with distributed applications running on many compute nodes of

a cluster. The general architecture of integration (Fig. 3.4) involves a single instance of the

Manager on one node, usually on the node on which the rank 0 (root) process is executing, and

an instance of the daemon module on each of nodes executing the application. The root node

shall henceforth be referred to as the kickoff node, with the remaining nodes being referred to

as remote nodes. The main function of the daemon module is to act as an interface between

the Manager and the distributed processes of the application. In some cases, it is also used to

pick up system-related information on the remote nodes, which is to be relayed to the Manager

to aid the decision making process.

An attractive feature of NICAN is that it does not require substantial coding modifications

to the high-performance application with which it is interfaced. In the case of MFDn, only a few
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Figure 3.4 General architecture for integration of NICAN with a distributed application.

changes were made to the source code. Specifically, they include starting up NICAN, tearing

it down, and the application specific adaptation handler, such as changing number of threads

dynamically based on the information conveyed by NICAN. Resource monitoring, analysis and

triggering of the adaptive mechanisms are implemented within the NICAN. Another salient

feature of NICAN is to enable or disable its actions with ease and on-demand by the application.

This fits very well with the idea of NICAN as a “black box” from an application scientist’s

perspective, abstracting away the details of its functioning.

3.4 Integration model and adaptation strategies

A major benefit of integrating NICAN with an application is to separate the system-based

monitoring from the invocation of adaptations which are application related. The MFDn-

NICAN integration may accomplish the goals described in this work by NICAN monitoring the

workload on a core and deciding the number of threads to be spawned by MFDn at particular

iterations of the Lanczos process. By collecting the information on the number of running

threads/processes resident in the system, a decision may be made to change the thread count

for the next iteration in order to avoid the oversubscription of a core. The core oversubscription

occurs when more than one thread is running on the core processing element and has been

shown to be detrimental for the application performance Apparao et al. (2008). It is clear that

the oversubscription monitoring and avoidance is a dynamic process which may not be dealt
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with effectively using static tuning and configuration. Thus, dynamic resource monitoring and

interfacing with applications as provided by NICAN is fully exploited in this work.

3.4.1 Oversubscription and context switching

Processors equipped with multiple cores have become ubiquitous in modern high-performance

computers. The number of cores is growing higher in order to keep up with Moore’s law, fur-

ther aggravating the “Memory Wall” which is caused by the inability of memory access to

keep up with the speed of processing. In such a scenario, to prevent cores from idling, the

use of multi-threading can increase the efficiency of applications by masking memory accesses

and communications with computations. Having multiple threads of execution in applications

enables to extract thread-level as well as instruction-level parallelism on modern multi-core

architectures. Some typical examples of multi-core processors are the Intel Core duo (2 cores),

the AMD Phenom II X4 (4 cores) and the AMD FX-8150 (6 cores).

The concept of multi-threading brings into light the idea of context switching. A context

switch means storing and restoring the processor state to resume execution from the point

where the switch occurred. With regard to threads, it means switching the flow of execution

among the different threads which execute on a single PE core sharing the same functional units

and execution pipeline, in addition to resources such as caches and TLB (Translation Lookaside

Buffer). The intervals between which context switching occurs are determined by the operating

system scheduler which usually gives a time slice to each thread/process before preemption and

control switching over to another thread/process. Context switches can be detrimental to the

performance of a multi-threaded application due to the scheduler overhead of switching among

the threads which execute on the same core. This process of switched execution of threads is

known as Simultaneous Multi-Threading (SMT) in operating system parlance. Some modern

processors however, such as the Intel Nehalem (Core i7) and the Itanium 9300, show good

performance with SMT by providing an environment which gives the notion of having multiple

virtual processors per physical core. This concept is called hyper-threading, but is beyond the

scope of this work and is hence not addressed here.

Even in the absence of hyper-threading, most modern operating systems are well equipped
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to handle multi-threading depending on the number of cores available on a processor. The

threads are usually distributed over the all the cores by the scheduler. This ensures that they

truly execute in parallel, since each PE core has its own functional units and execution pipeline.

Thus, to exploit the benefits of multi-threading, it is best to have the number of threads equal

to the number of cores. To have more threads than the number of cores is commonly known

as oversubscription because of the overhead incurred in context switching among the threads

executing on the same core.

3.4.2 Architecture of integration

In MFDn, as per the hybrid MPI/OpenMP approach presented in Maris et al. (2010), MPI

is used for distributed memory communication among the nodes with OpenMP being used to

spawn multiple threads within a node. The aim is to increase efficiency by taking advantage of

the multiple cores and shared memory structure on the node. Under the hybrid MPI/OpenMP

approach on a majority of architectures, we would want to run MFDn with one MPI process per

node and the number of threads per process equal to the number of cores on a node to prevent

any cores from idling. However, in realistic situations, there is a possibility of applications, e.g.,

run by other users on the same node(s), competing for the PE resources. This causes context

switching to occur which can be detrimental to the performance of MFDn. This is especially

true when the competing threads/processes are compute-cycle intensive, as is commonly the

case with large scale scientific applications. Hence, there is a need to develop strategies for

detecting possible oversubscription during run-time and invoking appropriate adaptations in

MFDn to be able to adjust to the changing system conditions. In this section, the architecture

employed for the MFDn-NICAN integration is described along with the system monitoring and

decision making strategies used for the invocation of adaptations in MFDn. These strategies

are sufficiently general to be employed with other applications.

In the previous section, the general architecture for the integration of NICAN with an

application was explained along with the main components of the NICAN engine. The same

architecture is employed for the integration with MFDn with the modules used for system

monitoring geared towards the need to change the number of threads spawned by MFDn at
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run-time. Fig. 3.5 depicts the architecture used for the integration at the Lanczos stage of

MFDn.

The MFDn-NICAN integration model includes a PE load module which monitors the num-

ber of running threads/processes in the system during the run-time of MFDn. The main

function of this module is to detect if there is oversubscription on any of the cores due to the

presence of competing applications. This module is loaded by the NICAN Manager thread,

which is started on the kickoff node and which interfaces with MFDn via the daemon module.

A daemon instance is started on every node which executes the application. Besides being the

Manager’s contact point for all the NICAN-integrated applications running on the node, the

daemon module also picks up information regarding the number of threads to be relayed to the

Manager.

The Manager uses the thread information obtained from the PE and daemon modules

to make a decision regarding the number of threads to be spawned by the Lanczos iterative

algorithm at the beginning of an iteration. It then invokes the appropriate adaptations via the

adaptation function. A simple algorithm is employed for the decision making process. Define

(1) the total number of running threads in the system as Θs, (2) the number of MFDn threads

spawned Θa, (3) the number of competing application threads Θc and (4) the number of PE

cores per node K, the number of MFDn threads that should be spawned for the ith iteration

for a particular node is calculated using Algorithm 1.

Algorithm 1 Number of MFDn threads to be spawned at the ith Lanczos iteration

Θc(i) = Θs(i)−Θa(i− 1)− 1
if Θc(i) ≥ K then

Θa(i) = 1
else

Θa(i) = K −Θc(i)
end if

Θs is found as a result of the monitoring process. K is a known constant for a node. In the

first line of Algorithm 1, the current number of MFDn threads along with the thread which

does the actual monitoring are subtracted from Θs. The NICAN thread is very lightweight and

hence does not cause any performance penalty in MFDn due to context switching.
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Figure 3.5 Architecture of the MFDn-NICAN integration.

With regard to implementation, information retrieved from the /proc/loadavg file is used

by the NICAN modules to find the number of running threads/processes in the system during

the run-time of MFDn. The number of threads as returned by NICAN after the decision making

process is spawned for a particular iteration by MFDn by making use of the OpenMP func-

tion omp set num threads(numthreads). Here, numthreads refers to the number of threads

to be spawned for a subsequent OpenMP region. Communication between NICAN and the

distributed processes of MFDn is established using the TCP/IP socket library.

3.5 Experimental results and discussion

In this section, the experiments conducted with the MFDn-NICAN integrated model are

presented along with some results that were observed in terms of improvement in performance

with the inclusion of dynamic adaptations. In these experiments, the performance of the MFDn-

NICAN code is tested in comparison with MFDn executing in a cluster environment. The aim

is to observe the impact of changing the number of OpenMP threads spawned dynamically as

opposed to running with a fixed number of threads. The NICAN middleware tool is used to

gather information about the system, in particular, the number of running threads/processes

sharing the PE resources on each node. Based on this information, a decision is taken by the

tool regarding the number of threads to be spawned which is then relayed to MFDn at regular
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intervals to invoke the appropriate adaptations.

The testbed used for the experiments was the “Dynamo” cluster consisting of 34 SMP

compute nodes, each having two quad-core 3.0 GHz Intel Xeon E5450 processor chips and 16

GB of RAM, i.e., equipped with a total of 8 cores per node and 272 cores overall. The nodes

are connected with both Gigabit Ethernet and DDR Infiniband. In these experiments, both

MFDn and MFDn-NICAN are run for 12C nucleus using six MPI processes, one on each node.

Furthermore, each process spawns eight OpenMP threads, which is specified at the start of

run, thus ensuring that none of the cores on a node are left idle. For these experiments, multi-

threaded regions are defined only during the Lanczos iterations with the rest of the code being

single threaded. With MFDn-NICAN, the number of threads is subject to change during the

course of the run depending on the PE resources available, while it is held constant throughout

the run in the case of pure MFDn. The aims are (1) to consider the penalty incurred due to

context switching in the presence of any application which competes for the same PE resources

and (2) to show the usefulness of integrating NICAN with MFDn in coping with such a situation.

The tests were carried out for two problem sizes, Nmax = 2 and Nmax = 4 for the 12C

nucleus. The problem size is characterized by the dimension of the Hamiltonian matrix which

is 17,725 for Nmax = 2 with 1,697,935 non-zero elements and 1,118,926 for Nmax = 4 with

279,405,126 non-zero elements. In general, as the Nmax value increases, so does the size of the

Hamiltonian matrix yielding more computationally-intensive and more accurate calculations.

The bar graphs in Fig. 3.6 and 3.7 depict performance results that were obtained for both

MFDn and MFDn-NICAN for these two problem sizes with varying degrees of competition.

The competition is defined as the percentage of the total (8) cores per node occupied with

other high-performance applications. For the purpose of competition, the quantum chemistry

software GAMESS Baldridge et al. (1993) was used in the configuration that has been shown to

be compute-cycle intensive. GAMESS processes were introduced on the nodes during the run-

time of MFDn and their impact on the performance for both pure MFDn and MFDn-NICAN

was observed.

From the two graphs (Fig. 3.6 and 3.7), it can be clearly seen that under increasing compe-

tition, the performance of MFDn reduces considerably due to context switches happening on
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Figure 3.6 Comparison of execution times of MFDn and MFDn-NICAN for 12C nucleus with
Nmax = 2.

more cores. On the other hand, with MFDn-NICAN, the performance is much better, being

almost equal to that of MFDn with full resource availability (i.e., with no competition and the

maximum number of threads) for the lower problem size Nmax = 2. For Nmax = 4, however, the

performance of the adaptive algorithm does not reach the peak performance since with compe-

tition from other applications, it is forced to run on fewer threads than the maximum possible.

This hinders the performance for larger problem sizes, as in the case of Nmax = 4 here, that

require full power of the node PE resources. Such a trade-off is acceptable, however, since the

performance penalty incurred due to context switching between MFDn and competing appli-

cations leads to a much slower execution. As is evident from the graphs, the penalty increases

with the increase in competition. Fig. 3.8 depicts the speed-up obtained for the multi-threaded

Lanczos iterative procedure with the number of threads for the larger problem size Nmax = 4.

The graph confirms the observations presented in Maris et al. (2010): The scaling suffers going

from two to eight threads since the multithreading fully parallizes only certain parts of the

computation while the critical section and the MPI communication overhead are still present.

Fig. 3.9 and 3.10 illustrate the performance of various sections of the MFDn code, again

with different degrees of competition for both the non-adaptive and adaptive algorithms. This

serves to determine which section is incurring the most performance penalty due to the context
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Figure 3.7 Comparison of execution times of MFDn and MFDn-NICAN for 12C nucleus with
Nmax = 4.
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Figure 3.8 Scaling of the Lanczos iterative phase with the increase in the number of threads
per MPI process.

switching. This is again shown for the same two problem sizes i.e., Nmax = 2 and Nmax = 4.

It can be seen that the multithreaded Lanczos iterative procedure incurs a higher penalty

as the degree of competition increases. Thus, it bears the primary responsibility for the perfor-

mance decrease whereas the other sections, namely, the construction of the Hamiltonian matrix

and the evaluation of observables, which are single-threaded, retain the same performance even

in the presence of competition. This is not surprising since the multiple threads in the Lanc-

zos procedure are spread across all the cores and undergo context switching in the presence of

competition on any of the cores while the calculations in the other two sections are undisturbed

since they enjoy a dedicated core. (Note that the maximum competition is 75% meaning that

MFDn has always a sole use of at least two cores, on which it performs the construction of
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Figure 3.9 Execution times of different sections of the code with different degrees of compe-
tition for 12C nucleus with Nmax = 2.

Hamiltonian and the observable calculation.)

These experiments indicate the usefulness of including adaptive capabilities in MFDn by

dynamically changing the number of threads to deal with the problems of oversubscription

and context switching. The advantage of using a middleware for this purpose, as explained

in the earlier sections, is to decouple the system-related monitoring and decision making from

the execution of the application without incurring much performance and interfacing overhead

for adaptation. The performance gains obtained as a result validate this adaptive approach

for MFDn. Since a generic middleware tool is employed to implement this approach, the

strategies presented here may be extended to other multi-threaded distributed high performance

applications.
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Figure 3.10 Execution times of different sections of the code with different degrees of compe-
tition for 12C nucleus with Nmax = 4.
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CHAPTER 4. Memory affinity strategy in multi-threaded sparse matrix

computations

4.1 Background and significance

Transistor densities have been growing in accordance with Moore’s law resulting in more

and more cores being put on a single processor chip. With the increasing core counts on mod-

ern multi-processor systems, main memory bandwidth becomes an important consideration for

high performance applications. The main memory sub-system can be of two types nowadays:

Uniform Memory Access (UMA) or Non-Uniform Memory Access (NUMA). UMA machines

consist of a single physical memory bank for the main memory, which may lead to the mem-

ory bandwidth contention when there are many application threads trying to access the main

memory simultaneously. This problem of scalability may be alleviated by NUMA architec-

tures wherein the main memory is physically split into several memory banks, with each bank

associated to a set of cores, the combination of which is called a NUMA node. The cores

associated with a particular NUMA node have a direct link to their own local memory bank,

thus enabling fast memory access for their threads when accessing from this local bank. Thus,

by having subsets of threads accessing data locally from individual memory banks, memory

contention may be reduced among the threads.

However, accesses to remote memory banks as in the case of large shared arrays, for example,

may become painstakingly slow since they have to take place over an interconnect. This may

negatively affect the application scalability for higher thread counts Lameter (2006). Thus,

it is imperative to carefully consider which parts of the shared data should be attributed to

which physical memory bank based on the data access pattern or on other considerations. Such

an attribution of data to physical main memory is often called memory affinity Bellosa and
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Steckermeier (1996); Kleen (2005). This notion goes hand in hand with the CPU affinity, as

noted in Grant and Afsahi (2007), such that the threads are being bound to specific cores for

the application start and their context switches are disabled. Once threads are bound, the

memory may be pinned too. On multi-core NUMA platforms, the ability to pin the memory in

the application code becomes important since it is generally most beneficial for a data portion

local to a thread to be placed on the memory bank local to the core it is executing on1, so as

to ensure the fastest access Antony et al. (2006).

Conversely, the default memory affinity policy — used in most Linux-type operating systems

— is enforced system-wide for all the application. This policy, called first-touch, ensures that

there is fast access to at least one memory bank regardless of the shared data access pattern

within application threads Iyer et al. (2002). Specifically, the data is placed in the memory

bank local to the thread writing to it first, which is typically done by the master thread. Thus,

the downside of the first-touch policy is that all the threads accessing this shared data converge

to this NUMA node, as shown in Fig. 4.1, causing bandwidth contention in the memory

bank servicing the master thread. The problem may be exacerbated since the master thread

typically initializes multiple shared data structures. Since the threads have to go out of their

local NUMA node for accessing the data, the remote access latencies are also incurred, which

causes the application performance overhead increase. Thus, the default first-touch memory

placement policy calls for improvement to achieve better scalability, which may be obtained

using already existing software libraries to work with NUMA nodes Kleen (2005).

The motivation for the present work was the need for improvements in sparse matrix-vector

multiplications (SpMV), which constitute the bulk of computational load in large-scale appli-

cations modeling physical phenomena using structured or unstructured matrices Saad (2003).

In particular, the nuclear physics application MFDn handles very large sparse unstructured

matrices arising in the solution of the underlying Schrödinger equation, as discussed earlier.
1Here and throughout the chapter, it is assumed that only one thread is executing per core and there is no

oversubscription of cores, as has been studied, e.g., in Srinivasa et al. (2011).
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Figure 4.1 Shared data access pattern with the default first-touch policy on a NUMA archi-
tecture. A dashed curved-corner rectangle represents NUMA node.

4.2 Proposed memory placement strategy

The goal of the proposed memory placement strategy is to minimize the data transfer

overhead between main memory and the application code when accessing shared data. Hence,

the default (first-touch) placement has to be changed according to certain application and

system considerations Goglin and Furmento (2009). In a nutshell, the following general steps

need to be taken to study the application at hand to determine the memory placement for its

shared data structures:

Step 1: Identify all the shared data structures in the application

Step 2: Classify them as having deterministic and non-deterministic access pattern by threads.

– For deterministic: Find a chunk-to-thread correspondence; Pin each chunk to the

memory bank local to the corresponding thread.

– For non-deterministic: Spread the data across all the memory banks.

The classification step (Step 2) may be performed based on a definition of the deterministic

and non-deterministic accesses to a data structure. In the former, portions of the structure is

accessed by a thread exclusively, while several thread may access a portion in the latter case.
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This definition is rather general and is featured, for example, in the case of multi-threaded

loop parallelization, such that a block of loop iterations is dedicated to a thread. If the loop

index corresponds to a data portion (called chunk), such as that of a shared array, then each

thread accesses its own array chunk exclusively. Such an array may be classified as having

deterministic access and then distributed among specific memory banks. Fig. 4.2 presents the

obtained distribution to the local NUMA nodes, such that vertical arrows emphasize the local

access patterns, that minimizes the access latency. Since, for the non-deterministically accessed

data structures, their thread access pattern and timing may not be known in advance, they are

spread out in a fine-grain fashion across all the memory banks, as sketched in Fig. 4.3, in an

attempt to alleviate the memory bandwidth contention. Algorithm 2 specifies array chunk sizes

attributed to each thread and, consequently, to each NUMA node by accepting the following

inputs:

. Total array dimension dim total;

. Total number of threads nthreads;

. Number of NUMA nodes mnodes (system parameter);

. Number of cores lcores per NUMA node lcores (system parameter).

and producing two outputs:

/ Chunk size dim per thread(i) attributed

to thread i, (i = 1, . . . , nthreads).

/ Chunk size dim per node(j) attributed

to NUMA node j, (j = 1, . . . ,mnodes).

Note that each NUMA node is typically associated with several cores — thus, with a group of

threads (one thread per core).

Algorithm 2 splits the data structure into chunks in accordance with the exact assignment

thread access pattern, in which each thread is assigned an (almost) equal contiguous portion of

the data structure. This pattern is common among multi-threaded programming models, such

as OpenMP Dagnum and Menon (1998), with the default assignment size to ensure contiguous

data in each chunk. Additionally, the thread scheduling (also called work-sharing) is assumed

to be static, so that it is known before the loop execution. Thus, once the contiguous chunk
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Figure 4.2 Proposed placement of the shared data accessed deterministically A dashed
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Algorithm 2 Determine chunk size per NUMA node.
for j = 1 to mnodes do

dim per node(j)← 0
end for
per thread dim← ceiling(dim total/nthreads)
virtual dim← per thread dim× nthreads

offset← virtual dim− dim total

for i = 1 to (nthreads− offset) do
dim per thread(i)← per thread dim

end for
for i = (nthreads− offset + 1) to nthreads do

dim per thread(i)← per thread dim− 1
end for
for j = 1 to mnodes do

for i = lcores× (j − 1) + 1 to lcores× j do
dim per node(j) ← dim per node(j)+

dim per thread(i)
end for

end for

sizes are determined by Algorithm 2, the actual chunk attribution is accomplished by providing

a mapping of chunk number to NUMA node number, where array chunks and NUMA nodes

are numbered consecutively, as in Fig. 4.2, for example.

4.3 Implementation details

The NUMA application programming interface (API) Kleen (2005) available for Linux is

used in this work to control the data placement for shared arrays, overriding the default first-

touch memory affinity policy employed by the operating system. This API offers two principal

memory placement policies called bind and interleave. The former places (binds) memory of an

application on a selected memory bank or set of banks whereas the latter spreads (interleaves)

data on a page-by-page basis over the memory banks of a NUMA machine. If applied through-

out the entire application, each policy may be too restrictive since it is often necessary to tailor

the memory attribution to a particular access pattern of a data structure Ribeiro et al. (2009).

For the fine-tuning purposes, the NUMA API provides a system call mbind() which may be

used to apply these affinity polices selectively to certain regions of the memory. The mbind()
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interface has been used in this work to implement the proposed shared data placement in which

certain portions of shared arrays are to be assigned to memory in accordance with their access

pattern within the multi-threaded application at hand. To benefit from the selective and intel-

ligent data placement on the memory banks, the thread migration or their context switch have

to be disabled. In other words, the CPU affinity must be observed, which may be accomplished

with the sched setaffinity() system call also available on Linux systems.

An important aspect to consider when using mbind() is that it is designed on work on large

chunks of data which are aligned on a page boundary i.e., the starting address of the chunk

should be an integral multiple of the system page size. So, once the shared array chunks have

been determined, it becomes necessary to check whether each such chunk is page aligned before

consigning it to a NUMA node. Otherwise, the nearest page-aligned address to the chunk is to

be determined, starting from which the chunk can be pinned to the appropriate NUMA node.

Such a pinning may cause an address mismatch between the page-aligned and the actual chunk

boundaries as determined in Algorithm 2. To minimize the occurrence of the mismatches, all

the shared arrays are allocated starting on a page boundary using the C function valloc().

With this set-up, the maximum difference between the mismatched addresses per NUMA node

is estimated to be half of the system page size. Note that a typical system page is of the order

of 103 bytes. Since high performance applications routinely work with the data in the order of

gigabytes, this mismatch has no serious impact on the effectiveness of the strategies described

in this work.

4.3.1 Shared arrays in sparse matrix-vector multiply

The sparse matrix-vector multiply (SpMV) forms an important computational core in many

scientific applications. Hence, it is highly beneficial to employ its efficient implementation.

Its naive implementations, however, may suffer from poor performance on multi-core NUMA

architectures mainly due to the memory contention and latency problems as will be evident

from the experiments described in Section 4.5. Therefore, the strategies described in Section 4.2

are being applied to sparse matrix data structures, such that the most common matrix storage

formats are considered. Specifically, sparse matrices are characterized by a very large percentage
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1: for i = 1 to n do
2: for k = ptrA(i) to ptrA(i + 1)− 1 do
3: y(i)← y(i) + x(jA(k))× A(k)
4: end for
5: end for

1: for i = 1 to m do
2: for k = ptrA(i) to ptrA(i + 1)− 1 do
3: y(jA(k))← y(jA(k)) + x(i)× A(k)
4: end for
5: end for

Figure 4.4 Pseudo-code for sparse matrix-vector multiplication in the CSR (top) and CSC
(bottom) format after the output vector initializations are performed.

— often as much as 95% — of zero entries, which are not stored for performance and space

reasons. As a rule of thumb, a n ×m sparse matrix is represented by three one-dimensional

arrays:

. A, for all the non-zero values

. jA for their positions in the in each row or column.

. ptrA for the pointers to the beginning of each column or row.

Such a storage format is called Compressed Sparse Row (CSR) or Compressed Sparse Column

(CSC) depending on whether column or row indices are being stored in jA, respectively. Then,

a multiplication of the sparse matrix stored in CSR or CSC by a vector x of size m may be

performed to obtain a vector y of size n, as shown in the top and bottom code segments,

respectively, in Fig. 4.4.

Sparse matrices are shared among the threads involved in the SpMV computation and need

to be bound to local memory banks to ensure minimal data transfer overhead. As is evident

from the code segments in Fig. 4.4, the outer loop is over the rows (for CSR) or columns (for

CSC) of the matrix. For a typical multi-threaded SpMV, this loop is parallelized such that

each thread gets a certain number of rows/columns to work with. However, several threads

may access the same vector components to read or write their values. Since the precise timing

of the read/write operations may vary dynamically, for coherent results, the sequencing of the

write accesses in the CSC format (line 3 of the bottom code segment in Fig. 4.4) must be
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Table 4.1 Shared array access and pinning for CSR.
Array Access Policy
A Deterministic Read Bind
jA Deterministic Read Bind
ptrA Deterministic Read Bind

x Non-deterministic Read Interleave
y Deterministic Write Bind

Table 4.2 Shared array access and pinning for CSC.
Array Access Policy
A Deterministic Read Bind
jA Deterministic Read Bind
ptrA Deterministic Read Bind

x Deterministic Read Bind
y Non-deterministic Write Interleave

enforced in some way. On the contrary, in the CSR format, the SpMV has no shared arrays

with simultaneous write accesses by threads, so no sequencing is needed.

The presence of shared arrays and parallelizable loops makes SpMV an ideal candidate for

testing the proposed memory affinity policies. Once these shared arrays have been identified,

they are assigned to the deterministic or non-deterministic category based on the thread access

patterns. The bind and interleave strategies are then applied in accordance with the two-step

strategy from Section 4.2. Tables 4.1 and 4.2 provide information regarding the shared array

access patterns which are part of the CSR and CSC multiplications, respectively, along with

the NUMA policy used for each.

It may be observed that sparse matrices are shared among the threads having exclusive

access to their portions in the SpMV computation, and thus, need to be bound to local memory

banks to ensure minimal data transfer overhead. On the other hand, the vectors x and y

may be shared with either deterministic or non-deterministic access depending on the type

of the storage format considered. Thus, to effectively distribute the shared arrays with the

deterministic access pattern, it becomes necessary to select specific portions (chunks) of these

arrays which are accessed by each thread. To accomplish this task, the output of Algorithm 2,

i.e., the chunk size of each NUMA node, is used to determine the array staring and ending
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indices that delineate each chunk boundaries.

Application interface. To facilitate the usage of proposed memory placement strategies,

a high-level interface set, termed MASA-SpMV (Memory Affinity for Shared Arrays-Sparse

Matrix Vector multiply) has been developed for sparse matrix-vector multiply in CSC or CSR

formats. This interface, encapsulating the implementation of Algorithm 2, determination of the

contiguous chunk start and end positions within the arrays and the memory pinning function

calls from Kleen (2005), is composed of the C function signatures as follows:

. void masa setcpuaff(int tid)

- Pins the the worker threads to the corresponding cores based on the thread ID which is

passed in as argument.

- Uses the Linux system call sched setaffinity() for this purpose.

. void masa preprocess()

- Determines the system constants mnodes and lcores required by Algorithm 2, maintained

as global variables.

- Catches environment variables which deal with multi-threading, such as OMP SCHEDULE

in OpenMP.

- Disables the proposed strategies if the thread scheduling differs from static.

. void masa allocate(void **sharedarray)

- Allocates the shared array as aligned to a page boundary.

. void masa compute chunks(int dim total,

int nthreads, void *ptrA)

- Computes the chunk size per NUMA node (Algorithm 2) for each shared array used in the

SpMV computation.

- Finds chunk-to-node mapping for these shared arrays and stores it using global data struc-

tures.

. void masa distribute(void *A, void *jA, void *ptrA, void *x, void *y)

- Determines the nearest page-aligned address for each shared array chunk.

- Pins the shared arrays according to the mapping calculated in masa compute chunks by
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calling mbind().

The MASA-SpMV interface has been packaged, fully documented and is widely available for

download from www.scl.ameslab.gov. The software is provided “as is” under the LGPL license.

It is designed mainly for the Linux operating system running on multi-core NUMA platforms.

To use the interface, one will need the NUMA API installed on their system (this can be done

using either a numactl RPM or libnuma-dev) and a compiler with OpenMP enabled.

4.4 Test applications

Armed with the proposed strategies and their incarnation in the MASA API interface, the

proposed strategy may be employed in realistic settings of scientific application codes. Two

applications have been selected for their reliance on parallel SpMV: CG (Conjugate Gradient)

NAS benchmark code and the ab-initio nuclear structure calculation code MFDn. Both codes

exploit multi-threaded parallelism using OpenMP, in which the SpMV loop is parallelized as

shown in Fig. 4.4(top).

4.4.1 CG: NAS parallel benchmark

NAS Parallel Benchmarks (NPBs) is a suite derived mainly from computational fluid dy-

namics (CFD) codes and is composed of both entire applications and computational kernels Jin

et al. (1999). In particular, the CG kernel been selected for this work. It consists of an iterative

solution of a linear system of equations with a sparse symmetric matrix and is performed as

part of a “outer” eigenvalue computation. The most computationally intensive stage of the

CG iterative method is sparse-matrix vector multiplication. As implemented in the CG of the

NAS suite, this multiplication stores the full matrix — without regard for its symmetry — in

the CSR format. Its main loop features multi-threaded parallelism with OpenMP2.

4.4.2 MFDn: realistic application

The MFDn code has already been intoduced earlier and is used in this particular context

because of its use of parallel SpMV. In MFDn, each Lanczos iteration spends most time in
2This implementation has been provided by the OMNI compiler group.
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1: for i = 1 to m do
2: for k = ptrA(i) to ptrA(i + 1)− 1 do
3: y(jA(k))← y(jA(k)) + x(i)× A(k)
4: yt(i)← yt(i) + xt(jA(k))× A(k)
5: end for
6: end for

Figure 4.5 Pseudo-code for sparse matrix-vector multiplication in MFDn for the off-diagonal
processors.

SpMV with the Hamiltonian matrix, only the lower half of which is stored (in the CSC format)

to save memory.

Under the hybrid MPI/OpenMP approach for MFDn, the sparse matrix data is partitioned

among the available compute nodes and is being exchanged by using the MPI distributed

communication library. Then, the local portions of the data are being accessed also but,

this time, by using multi-threaded programming tools such as OpenMP. Fig. 3.1 shows the

MFDn sparse matrix distribution across the available MPI processes, which are organized in

the 2 × 2 grid. The off-diagonal processors (numbered 6 – 15 in Fig. 3.1) have more work

to do during the SpMV phase since they have to work with the upper half of the matrix as

well (for computing the transpose output vector) which is not stored in memory. The code

segment in Fig. 4.5 describes the SpMV for MFDn on an off-diagonal MPI processor with xt

and yt referring to the components of the input and output vectors, respectively, used with

the transposed matrix (i.e., upper matrix half). In essence, this SpMV morphs the two loops

shown in Fig. 4.4 into one, such that its multiplication operation in line 3 is the same as the

one in Fig. 4.4(bottom). Therefore, during its multi-threaded execution, the write operation

on y has to be also performed in sequence by the threads involved.

Using OpenMP, the serialization of the write operation has been implemented by way of

a “critical section”, which is entered one thread at a time and, thus, exhibits no parallelism

hurting the code scaling at higher thread counts. Since the experiments presented here aim

to test the proposed memory placement strategy for a large number of threads working in

parallel, a workaround to circumvent the need for serialization has been developed for the

testing purposes. Specifically, in MFDn, the SpMV has been augmented with the code to
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1: for i = 1 to m do
2: for k = ptrA(i) to ptrA(i + 1)− 1 do
3: yt(i)← yt(i) + xt(jA(k))× A(k)
4: end for
5: end for
6: for j = 1 to n do
7: for k = ptrAr(j) to ptrAr(j + 1)− 1 do
8: y(j)← y(j) + x(jAr(k))× Ar(k)
9: end for

10: end for

Figure 4.6 Pseudo-code for the modified sparse matrix-vector multiplication in MFDn for the
off-diagonal processors.

perform the multiplication in the CSR as well as CSC matrix formats, such that CSC is used

for the computation of yt and CSR for y, respectively. Fig. 4.6 presents the modified SpMV

for an off-diagonal processor. Note that this code requires additional storage for the CSR

representation of the matrix, which is reprsented by the arrays Ar, jAr, and ptrAr. These

stand to the value, position and pointer arrays in CSR.

4.5 Experimental results and discussion

Experiments were conducted for the two test applications with the following problem and

execution parameters:

CG: Class C with matrix size 150,000; 75 iterations; single MPI process.

As described earlier, CG uses an iterative process to determine the lowest eigenvalue of a

sparse symmetric matrix. The benchmark comes in 5 sizes (classes): A, B, C, W(orkstation)

and S(ample). Class C is the largest problem size, in terms of the size of the matrix and the

number of iterations required to achieve convergence. The current implementation employs

parallelization only in the form of multi-threading using OpenMP3. It does not involve multiple

processes or any form of distributed memory communication.

MFDn: Carbon-12 (12C) nucleus with the quantum oscillation number Nmax = 4 resulting

in the matrix of size 1,118,926; 400 Lanczos iterations; six MPI processes (one per compute

node).
3This implementation has been provided by the OMNI compiler group.



www.manaraa.com

36

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

3 6 12 24

Sp
e

ed
u

p
 

Number of threads 

Figure 4.7 CG performance with first touch policy and increasing thread count.

The tests were performed on the Hopper supercomputer at NERSC. Hopper is a Cray XE6

with 6,384 compute nodes. Each compute node has a cache coherent Non-Uniform Memory

Access (ccNUMA) architecture with two twelve-core AMD ‘MagnyCours’ 2.1 GHz processors

and 32 GB of RAM. The RAM is split into 4 memory banks of 8 GB each with each group of

6 cores having a direct link to one memory bank. Thus, one NUMA node is associated with

six cores. Hopper runs a SUSE Linux Enterprise Server 11 operating system and the default

compiler is the Portland Group (PGI) compiler which is used in this work. All the results are

reported by timing SpMV (wall-clock time) on a single compute node on Hopper. For MFDn,

the maximum time is taken over all the compute nodes running off-diagonal MPI processes

(Fig. 3.1) since they appear to be more compute-intensive with regard to SpMV.

First, a scaling study was conducted to observe the impact of the default first touch policy

on the performance of the two applications when the number of threads is increased. Fig. 4.7

and 4.8 show the speed-ups obtained with varying thread numbers per node, normalized to

the smallest considered number of threads, for CG and MFDn, respectively. Note that the case

of one thread is skipped in exposition due to its triviality when investigating remote memory

contention and latency in multi-threaded environments. A linear speed-up has been observed in

SpMV when increasing the number of threads from one to three. From Fig. 4.7 and Fig. 4.8, it

can be clearly observed that there is good scaling in moving from three to six threads. Beyond

that, however, the scaling is erratic and poor, which may be be explained by remote access

latencies and bandwidth contention.
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Figure 4.8 MFDn performance with first touch policy and increasing thread count.
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Figure 4.9 Performance gains of CG when the proposed strategy (red bars) is used. For each
thread count, the result is normalized by the performance with the first-touch
policy (blue bars).

Next, a performance comparison was conducted by applying the proposed memory place-

ment strategy during the SpMV in the two applications. Fig. 4.9 and 4.10 illustrate the gains

obtained with the proposed strategy compared with the default policy for CG and MFDn,

respectively, while Fig. 4.11 and 4.12 present the “raw” speed-ups as calculated with respect

to the lowest thread count used in the experiments.

From the comparison, it is clear that CG is benefiting from the proposed strategy to a

much higher extent than MFDn. Additionally, the scaling for CG is almost ideal whereas it

suffers for MFDn moving all the way up to 24 threads. The absence of parallelism in the

critical section of SpMV hinders the performance of MFDn at higher thread counts. Hence,

the SpMV as in Fig. 4.6 has been considered in the experiments. Fig. 4.13 and 4.14 present

the obtained results for the performance gains with the proposed strategy and for the scaling,

respectively. Near perfect scaling has been encountered for the modified SpMV, which proves
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Figure 4.10 Performance gains of MFDn when the proposed strategy (red bars) is used. For
each thread count, the result is normalized by the performance with the first-touch
policy (blue bars).
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Figure 4.11 CG performance with proposed policy and increasing thread count.
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Figure 4.12 MFDn performance with proposed policy and increasing thread count.
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Figure 4.13 Performance gains of modified MFDn (SpMV) when the proposed strategy (red
bars) is used. For each thread count, the result is normalized by the performance
with the first-touch policy (blue bars).
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Figure 4.14 Modified MFDn (SpMV) performance with proposed policy and increasing thread
count.

the effectiveness of the proposed strategies within multi-threaded applications with high degree

of parallelism.
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CHAPTER 5. Conclusions and future work

The main objective of this work is to make the execution of high performance scientific

applications more architecture and system aware so that they are able to utilize the computa-

tional resources available to the best possible extent. To facilitate this, the applications have

been augmented with certain capabilities which allow them to adapt, either statically or dy-

namically to the system on which they are executing, to achieve best performance. Two such

capabilities are discussed in this work with respect to multi-threaded scientific computations,

which have been found to have a significant impact on application performance, resulting in

average speedups of two to four times.

First, the inclusion of dynamic adaptations is considered in MFDn, a large scale parallel

code used for ab-initio nuclear physics calculations, by integrating it with the middleware tool

NICAN. The tool monitors the system resources during the run-time of MFDn and makes

a decision on the number of threads to be spawned by the multi-threaded Lanczos procedure

during the iterative process. As a result, MFDn self-adapts to the dynamically changing system

conditions, such as PE resource availability. Here, PE resource availability has been tested

using competing applications that might execute simultaneously in the non-disjoint subsets of

nodes in a cluster environment. The integration of MFDn with the middleware tool NICAN

proved to be useful for facilitating MFDn adaptations in a non-intrusive manner. Adaptation

decision-making strategies may be implemented in NICAN as application-specific or general-

purpose modules. The proposed adaptation strategies brought about significant performance

gains: more than two-fold improvement for very large problem sizes and surpassing a seven-fold

improvement for the problem sizes that do not place excessive demands on the single-node PE

resources. The adaptation of the number of threads available to the application to eliminate

the context switches by the operating system is general. Thus, it may be used by a wide class
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of applications with a computationally-intensive iterative calculation.

Second, the impact of the memory affinity on multi-threaded applications is studied when

executing on multi-core NUMA architectures with multiple physical memory banks. A strategy

is proposed to place the shared data into specific memory banks based on the access pattern

within the application. Specifically, the shared data is first categorized as being deterministi-

cally or non-deterministically accessed. Then, for the former, the chunk sizes are computed for

the distribution to the memory banks local to the threads accessing the chunk. The data ac-

cessed non-deterministically, on the other hand, is to be interleaved across the memory banks

on the uniform fine-grain (page) bases. A way of tailoring this general strategy to a com-

putation has been also provided by considering sparse matrix-vector multiplication as a case

study. For this purpose, two widely-used sparse matrix representations have been selected

and an API proposed to employ the strategies within the multiplication code. By using this

API, other multi-threaded computations that access shared data may be enhanced with the

proposed strategy. The new strategy overcomes the shortcomings of the default operating

system placement policy that may cause remote access latencies and bandwidth contention in

NUMA architectures. Both the CG computational kernel from the NAS parallel benchmark

suite and the ab-initio nuclear structure calculation MFDn benefited greatly from the proposed

strategies. Improvements of up to 3.5 times were observed compared with the default memory

placement. For any increase in the number of computational threads on a multi-core node, an

almost perfect performance scaling has been achieved.

The system monitoring process employed by NICAN in the first part of the work is largely

local in nature, in the sense that each node has its own PE which may be monitored inde-

pendently. Hence, the proposed adaptation strategy suits well massively parallel architectures

and may be employed in conjunction with global performance enhancing techniques thereby

creating a multi-level adaptation. The exploration of hierarchical adaptations is left as future

work. Also, with regard to the proposed memory affinity strategy, we envision that this may

be expanded in the future to hierarchical NUMA architectures as they come on-board with the

advent of exascale computing platforms.
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